Monitoring Aquatic Contaminants with Time-averaged Concentrations by Programmable In Situ Extraction

Rolf U. Halden, PhD, PE
Isaac B. Roll, PhD

October 27, 2015
This work was performed under

ESTCP ER-201122

Cost-Effective, Ultra Sensitive Groundwater Monitoring for Site Remediation and Management
Agenda

1. Background and Rationale
2. *In Situ* Sampler
3. Demonstration
4. Applicability
5. Questions and Comments
1. Background and Rationale
Sustainability and Economics

- Characterization drives up to 25% of remediation expenditures\(^1,2\)
- $2 billion/year (US)
- Federal mandates to reduce energy use, carbon emission

25% Characterization and Monitoring

Side Remediation Expenditures (approximately $8 billion/year)
Environmental Characterization

• Taking measure
 – Sampling method in the field
 – Analytical method in the lab

• Sources of error
 – Sampling: >90%³
 – Analytical: <10%

• Training, SOPs, QA/QC cannot address all sources
Liquid Sample Challenges

- Preservation
- Mass and volume
 - Transportation
 - Hazardous waste
- Field extraction
 - Improves stability of analytes
 - Reduces mass, handling
Dynamic Environments

• Discrete sampling may be too infrequent

• Time-integrated sampling
 – Passive samplers (weeks)
 – Active samplers (days)
 – Reproducibility
Approach

• Reduce and manage sampling error
 – Active sampler
 – Simultaneous, replicate samples

• Eliminate liquid samples
 – *In situ* extraction with off-the-shelf consumables
 – Reduce sample mass, improve stability

• Time-integrated sampling
 – Programmable sampling rate
 – Sampling periods from days to weeks
2. *In Situ* Sampler (IS2)
Reduce and Manage Error

- Precision, programmable positive-displacement pumps
- Six parallel sampling channels for simultaneous replicates
- Autoclavable glass (5 mL) or plastic (10 mL) syringes

Photographs: Isaac Roll
Solid phase extraction (SPE)
Parallel and/or series extraction
Commercial, off-the-shelf cartridges and sorbents
Lab methods become field methods
Time-Integrated Sampling

- Programmable sampling rate
- Timed aliquots or nearly-continuous sampling
- Sampling periods from days to weeks
In Situ Sampler (IS2)

140 cm demonstration sampler (including optional liquid capture)
3. Demonstration
Demonstration: Coronado Island

- Shallow, coastal freshwater aquifer
- Sands, sandy silts
- Chromium-VI
- Demonstration well
 - 10-cm diameter
 - Water at 4 ft
 - Screened 9 – 19 ft
 - 0.25 mg/L Cr(VI) (July 2013)

Satellite Image: Google Earth
Pre-Demonstration Sampling

- 24-hour sampling at two-hour intervals
- Cr(VI) concentration fluctuated by ±20% of mean
- Fluctuation followed tide
- No observed change in depth to water
Demonstration Objectives

• Reduce and manage sampling error
 – 1.25 mL samples at 2-hr intervals
 – 420 mL total
 – Triplicate samples

• Eliminate liquid samples
 – Parallel SPE and liquid sampling to demonstrate equivalence

• Time-integrated sampling
 – 28-day, 420-mL composite sample
Demonstration: Coronado Island
Demonstration: Coronado Island

Photographs: Erin Driver (L) and Isaac Roll (R)
Reduce and Manage Sampling Error

- Triplicate samples provide inter-sample error (8%)
- Active sampling improved sampling rate (R_S) precision (3.4%) versus passive samplers7,8,9,10

Range of RSD (%) Observed for Sampling Rates

<table>
<thead>
<tr>
<th></th>
<th>CSS</th>
<th>MESCO</th>
<th>POCIS</th>
<th>SPMD</th>
<th>IS2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>(n = 18)</td>
<td>(n = 21)</td>
<td>(n = 46)</td>
<td>(n = 12)</td>
<td>(n = 8)</td>
</tr>
</tbody>
</table>

CSS: Constantly Stirred Sorbent
MESCO: Membrane-Enclosed Sorptive Coating
POCIS: Polar Organic Chemical Integrative Sampler
SPMD: Semipermeable Membrane Device
IS2: In Situ Sampler
Eliminate Liquid Samples

- 420-mL liquid samples yielded 4-g SPE samples
- Equivalent to 336 discrete samples
- No liquid handling by technicians
- 99% reduction in material leaving site

For 250-mL samples:

- Carbon Impact of Transportation\(^5\) -98%
- Cost of Transportation\(^6\) -92%
- Hazardous Material Production -98%
Time-Integrated Sampling

- 28-day time-integrated average
- 75% ± 6% recovery
- 8-fold improvement in reporting limit
Comparison of Costs

• Capital
 – Research instrument costs were similar to available commercial instruments ($4000)

• Operating
 – Technician time in field observed similar to other instruments
 – Waste and transportation costs reduced
4. Applicability
Method Development

• Environmental characteristics amenable to passive sampling (see ASTM D7929-14)

• Contaminant compatibility and degradation modes
 – Many contaminants are stabilized by field extraction\(^4\)
5. Conclusions
Conclusions

• *In Situ* Sampler
 – High-precision active sampling
 – Simultaneous replicate samples
 – *In situ* solid phase extraction
 – Commercial off-the-shelf consumables
 – Long time-base, time-integrated sampling
 – Large sample volume

Photograph: Erin Driver
Acknowledgements

• ESTCP
 – Project Sponsor

• NAVFAC Southwest
 – Case Study Site at Naval Air Station North Island, San Diego, CA

• Amec Foster Wheeler
 – Development Study Site at Former Williams Air Force Base, Mesa, AZ

• ASU Center for Environmental Security Team and Collaborators
References

References

Correspondance

Rolf U. Halden, PhD, PE
Director, Center for Environmental Security
The Biodesign Institute at Arizona State University
781 E. Terrace Road, Tempe, AZ 85287-5904
Email: halden@asu.edu
Phone: 480-727-0893