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7. THE CELLULAR ENVIRONMENT

4 July 2020

Armed with an appreciation for the variation in the population-genetic environment
experienced by different lineages and the principle factors governing evolutionary
change, we now consider a few of the most basic chemical and physical constraints
dictating the biological properties of cells and the settings in which they can survive.
Unlike the population-genetic environment, several aspects of the cellular environ-
ment are largely invariant across the Tree of Life. These include the elemental
makeups of cells, the diffusion properties of molecules, the effects of temperature
on biological processes, and the amounts of energy accessible from various food
types. Some lineages have evolved special attributes to cope with such challenges,
e.g., increased protein stability in thermophiles, and the use of motors for molecular
transport in eukaryotes. Nonetheless, the basic selective constraints imposed by the
laws of physics and chemistry are ever present.

The cellular environment is in large part defined by ancient historical contingen-
cies, with the earliest stages of evolution having set the elemental requirements of
cell bodies and the limited classes of biochemical building blocks constructed from
them. Life depends on less than 20% of the 119 described elements, but many of
these have environmental concentrations thousands to millions of times lower than
those found in cellular biomass, highlighting the power of cells to sequester nutri-
ents. Of the myriad forms of organic compounds, life has come to rely on just a
few fundamental types – amino acids, nucleotides, lipids, carbohydrates, and a few
others.

Here, we consider some of the quantitative consequences of biophysical and
chemical constraints for cell biology. With an overview of what cells are made
of, how many molecules are present per cell, and how much carbon and energy
is required for cellular reproduction, the stage will then be set for understanding
the breadth of issues covered in subsequent chapters. As introduced here, and
further elaborated on in Chapter 8, numerous cellular features scale with cell size
in predictable ways that transcend phylogenetic boundaries. Finite numbers of
molecules per cell, combined with the physical constraints associated with molecular
diffusion and temperature, dictate the possible rates of intracellular biochemical
reactions; and the energy content of resources constrains the rate at which new
biomass can be constructed. Whatever the sources of these “rules of life,” they
define the ultimate limits of the evolutionary playing field. An excellent overview
of many of the points discussed below can be found in Milo and Phillips (2016).
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The Molecular Composition of Cells

The primary component of all of today’s cells is water, albeit generally with a much
higher solute load than in the surrounding environment. Cell dry weights scale with
cell volume in what appears to be a near universal relationship across all phylogenetic
groups. Over a range of eleven orders of magnitude in cell volume, there is a smooth
power-law relationship of

W = 0.57V 0.92, (7.1)

where cell dry weight W has units of pg (picograms, or 10−12 grams) and cell vol-
ume has units of µm3 (cubic microns, or 10−12 ml) (Figure 7.1). The exponent is
significantly less than 1.0, indicating that cell density (W/V ) decreases with the 0.08
power of cell volume. Because 1 µm3 of water weighs 1 pg, these results imply that
between one-fifth (large eukaryotic cells) and one-third (small bacterial-sized cells)
of total cell weights are comprised of biomolecules and ions. Exceptions occur in
diatoms, haptophytes, and foraminiferans, whose cells have hard outer coverings.

Water. Because life’s association with water from the start, many of the features
of biology have been permanently molded by the unique properties of this simple
molecule. Consisting of a bent complex of two hydrogen atoms and one oxygen atom,
water molecules have polarity, with a slight negative charge on the oxygen side and a
slight positive charge on the hydrogen side. As a consequence, liquid water naturally
forms a three-dimensional network with each molecule being connected to three to
four others via hydrogen bonds in a sort of tetrahedral arrangement (Figure 7.2).

These unique organizational features enable water to operate as a highly ef-
fective solvent for other polar molecules. Solubility is an essential feature of most
biomolecules involved in chemical reactions requiring the diffusive contact of dis-
solved reactants. On the other hand, the exclusion of nonpolar molecules from
the water network provides a spontaneous pathway for the construction of certain
cellular features. For example, in water, the hydrophobic tails of lipid molecules
naturally aggregate in a highly coordinated fashion (Chapter 15), generating the
membranes upon which cells rely.

The hydrogen-bonding ability of water can also present a problem. First, as the
inner hydrophobic cores that maintain protein structure can be compromised by
the intrusion of water molecules. This imposes strong selective pressure for soluble
proteins to achieve their globular structures by populating their outer surfaces with
hydrophilic amino acids (Chapter 12). Second, the cohesive property of networks of
water molecules imposes a drag on large molecules moving through the cytoplasm
and on cells moving through aqueous environments, thereby limiting rates of intra-
cellular reactions and extracellular nutrient uptake (Chapters 18 and 19) as well as
the swimming speed of mobile species (Chapter 16).

Finally, the thermal properties of water are unique. The viscosity of water
declines by nearly 50% from 4◦C to 40◦C, so warm water imposes less resistance
to the directed movements of cells but also provides less buoyancy (e.g., imposing
higher sinking velocities in aquatic settings).At normal atmospheric pressure, pure
water freezes at 0◦C, imposing a lower temperature barrier to single-celled organisms
incapable of thermoregulation. However, the fact that water has a maximum density
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at 4◦C provides a buffer against such an extreme – aquatic environments freeze from
the top down, with bottom waters never colder than 4◦C. Ball (2008, 2017) provides
a comprehensive overview of many additional knowns and unknowns regarding the
biological consequences of water.

Elemental composition. Of the many dozens of chemical elements found in the
natural world, only about 20 are essential to life. Ignoring hydrogen and oxygen,
carbon is always predominant in terms of molar composition, followed by nitrogen
(Table 7.1). The bulk of the remaining biomass is associated with the two other
elements, phosphorus and sulfur, incorporated into one or more building blocks
of cells (e.g., nucleic acids, amino acids, and lipids), along with five other major
ions – sodium, calcium, magnesium, potassium, and chloride. All of these elements
generally have intracellular concentrations > 1 mM. Essential trace metals (e.g., iron,
manganese, cobalt) that serve as cofactors of individual enzymes are present at one
to two orders of magnitude lower concentrations. Redfield (1934) first proposed that
the ratio of C, N, and P atoms in cells is typically on the order of 106:16:1, and the
average of the exemplars in Table 7.1, 100:13:1, is close to this expectation.

A comparison of cellular elemental concentrations with those in the environment
reveals the extent to which cells must go to sequester nutrients. There can be
considerable variation in the biogeochemistry of different environments, but reliable
average estimates exist for the dissolved content of ocean water. As many of the
species in Table 7.1 derive from marine environments, this will be used as a reference
point. Relative to levels in seawater, the degree of cellular enrichment averages
∼ 5000× for carbon, and 50, 000 to 60, 000× for nitrogen and phosphorus (in terms
of molar concentration). All of the remaining major ions range from being nearly
isotonic with sea water to enriched by no more than 25×. On the other hand, several
essential trace metals (iron, manganese, and cobalt) are enriched by factors > 106.

To appreciate the challenges imposed by nutrient acquisition, consider as an
example phosphorus, which has an average cellular enrichment of ∼ 60, 000× . Living
in an average marine environment, in order to produce an offspring, a bacterial
cell with volume 1µm3 would need to accomplish the equivalent of fully clearing a
surrounding volume of ∼ 60, 000µm3 of P, and for the trace metals noted above, the
equivalent of ∼ 106 cell volumes would need to be scrubbed clean. For a moderate
sized eukaryotic cell, 100µm3 in volume, the necessary volumes of environmental
clearance are 100× higher.

When viewed in the context of cell-division times, the impressive rate at which
cells harvest nutrients becomes clear. Again, consider a cell with volume 1 µm3

(equivalent to 10−15 liters) at birth. With an average internal concentration of 115
mM for phosphorus (Table 7.1), such a cell would contain ∼ 7×107 P atoms. Cells of
this size have a minimum doubling time of ∼ 0.4 days at 20◦C (Chapter 8), implying
an incorporation rate of ∼ 2000 P atoms/sec at maximum growth rate. Similar
calculations for cells of volume 10, 100, and 1000 µm3, growing at maximum rates,
indicate incorporation rates of ∼ 1 × 104, 9 × 104, and 6 × 105 P atoms/sec. Given
the average 100:13:1 ratio for C:N:P noted above, these incorporation requirements
would be 100 and 13× higher for C and N atoms, respectively. Thus, depending on
their size, when growing at maximum rates, cells incorporate on the order of 106 to
1010 atoms per minute.
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As can be seen in Table 7.1, there is variation among species in elemental com-
position, and some of this may relate to cell size. Menden-Deuer and Lessard (2000)
summarized the scaling of carbon content with cell volume in a wide variety of uni-
cellular marine eukaryotes. Aside from chrysophytes, which have inexplicably low
carbon estimates, the average exponent on the power-law relationship across groups
is 0.91 (SE=0.03), so there is a decline in carbon content per cell volume in larger
cells. This is consistent with the point made in Figure 7.1. For cells of volume 1,
10, 100, and 1000 µm3, mean carbon contents are 0.30, 0.23, 0.18, and 0.14 pg/µm3,
implying a reduction in cell density with increasing cell size. However, using Equa-
tion 7.1, the average fractional contributions of carbon to dry weight for cells of
these sizes are ' 0.53, 0.49, 0.46, and 0.44, respectively. Thus, a rough rule of thumb
from these and other studies (Ho and Payne 1979; Roels 1980; Finlay and Uhlig
1981; Williams et al. 1987; von Stockar and Marison 1989; de Queiroz et al. 1993) is
that carbon contributes about 50% to average dry weight in both prokaryotic and
eukaryotic cells.

Table 7.1. Contents of the major elemental constituents (other than hydrogen and oxygen)
in a variety of unicellular species. Concentrations in the top half of the table are in units of
mM, whereas as those in the bottom half are µM. Species are in order of increasing cell vol-
ume (µm3). The means for Ca and Sr exclude the haptophytes E. huxleyi and Gephyrocapsa
oceanica, which have hard outer shells consisting of these elements. Prochlorococcus and
Synechococcus are cyanobacteria; Vibrio and Escherichia are heterotrophic bacteria; Pyc-
nococcus, Nannochloris, Pyramimonas, and Dunaliella are green algae; Saccharomyces is
budding yeast; Nitzschia, Amphidinium, and Thalassiosira are diatoms; and Prorocentrum
and Thoracosphaera are dinoflagellates. Seawater concentrations are taken from Nozaki
(1997). References: cyanobacteria (Heldal et al. 2003); heterotrophic bacteria (Fagerbakke
et al. 1996, 1999); yeast (Lange and Heijnen 2001); and all others (Ho et al. 2003).

Species Size C N P S K Na Mg Ca Cl

Prochlorococcus sp. 0.16 15323 1682 87 82 49 410 371 25 173
Synechococcus sp. 1.00 14906 1755 122 72 78 248 104 49 120
Vibrio natriegen 3.50 8333 1837 157 116 320 400 73 8 1320
Escherichia coli 3.80 7675 1880 263 74 62 210 61 10 104
Pycnococcus provasoli 10 14000 1900 72 77 89 19 4
Nannochloris atomus 14 14000 2000 81 29 78 19 2
Saccharomyces cerevisiae 67 15809 2218 131 27 39 7 26 0
Nitzschia brevirostris 119 11000 1700 250 290 610 150 67
Emiliania huxleyi 142 10000 1200 130 100 110 18 19000
Gephyrocapsa oceanica 142 8900 1000 140 140 130 18 18000
Dunaliella tertiolecta 227 11000 1900 49 14 18 18 1
Amphidinium carterae 514 1200 160 9 12 1 5 3
Pyramimonas parkeae 587 6800 570 32 47 27 55
Prorocentrum minimum 833 22000 1800 16 350 210 160 61
Thoracosphaera heimii 1353 5100 400 63 82 63 30 2800
Thalassiosira eccentrica 6627 18000 1900 240 470 790 520 160

Means 11503 1494 115 124 167 255 106 232 429

Seawater 2.25 0.03 0.002 28 10.2 469 52.7 10.3 546
Cellular enrichment 5,100 50,000 57557 4.4 16.4 0.5 2.0 22.6 0.8
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Sr Fe Mn Zn Cu Co

Pycnococcus provasoli 8 910 150 66 38 7
Nannochloris atomus 4 1100 93 140 19 7
Saccharomyces cerevisiae 354 31 642 46
Nitzschia brevirostris 330 790 590 69 46 14
Emiliania huxleyi 44000 460 940 50 9 39
Gephyrocapsa oceanica 39000 560 990 57 16 50
Dunaliella tertiolecta 4 560 93 74 33 1
Amphidinium carterae 11 120 47 12 5 3
Pyramimonas parkeae 390 500 250 48 20 8
Prorocentrum minimum 470 1100 980 140 440 73
Thoracosphaera heimii 5000 110 79 7 4 6
Thalassiosira eccentrica 950 1600 500 240 68 59

Means 796 680 395 129 62 24

Seawater 89 0.00054 0.00036 0.0054 0.0024 0.000020
Cellular enrichment 8.9 1,260,000 1,086,000 24,000 26,000 1,182,000

Biomolecules. The nonaqueous portion of cells consists primarily of macromolecules
such as proteins, nucleic acids, lipids, and carbohydrates (as well as their precursor
building blocks). Most information on this fundamental issue is confined to quite old
literature. Some of the data derive from methods that are not terribly reliable, and
variation is also associated with various growth conditions during assays (Chapter
9). The most reliable statement that can be made is that proteins comprise the
largest fraction of cellular biomass (on a dry weight basis), typically in the range
of 40 to 60% in prokaryotes, but somewhat lower in eukaryotes (Figure 7.3). The
other primary components are RNA (including messenger, ribosomal, and transfer
RNAs), carbohydrates (especially in species with cell walls – most bacteria, and
some eukaryotes such as fungi and plants), and lipids (which are more enriched in
eukaryotic cells, owing to the presence of internal membranes).

Although the fractional contributions to biomass from protein, RNA, lipids, and
carbohydrates do not obviously scale with cell volume, the data are scant and noisy
enough that such patterns cannot be entirely ruled out. However, because genomes
have been sequenced for a substantial number of species, and because 109 bp of DNA
is equivalent to ∼ 1 pg dry weight, it is possible to carefully evaluate this matter
for DNA. Here, there is a very strong negative scaling with cell volume (Figure
7.3). Despite its centrality to all of life, DNA almost never constitutes > 10% of the
biomass of any known cell, and this fraction declines to 0.001% in relatively large
eukaryotic cells. Thus, although larger cells tend to have larger genomes, scaling
as ∼ V 0.25, the proportional investment in total cellular biomass is progressively
diminished.

Numbers of Biomolecules per Cell

The preceding results provide a generic view of cellular contents per unit biomass,
but finer details are required to understand issues related to the products of spe-



6 CHAPTER 7

cific genes, such as reaction rates among colliding particles, cellular stochasticity,
random variation in inheritance, etc. High-throughput methods for characterizing
and quantifying individual mRNA and protein molecules provide insight into these
matters. Although data are only available for a few species, over a range of five
orders of magnitude in cell size (including both prokaryotes and eukaryotes), the
total number of protein molecules/cell scales as

Ntot,p = (1.6× 106)V 0.93, (7.2a)

where V is the cell volume in units of µm3 (Figure 7.4). The smallest known bac-
terial cells harbor somewhat fewer than 105 total protein molecules, whereas larger
eukaryotic cells (like those in metazoans) contain > 109.

Because the genomes of different species can encode for different numbers of
protein types, a view at the gene-specific level is necessary to resolve the degree of
gene-expression stochasticity. Owing to the fact that large cells often harbor more
genes, the average number of proteins per active gene scales with cell volume more
weakly than the total number of proteins per cell,

Np = 1700V 0.67. (7.2b)

There is, however, substantial variation in the amount of protein product associated
with different genes within a cell around the overall mean Np. Distributions of the
numbers of proteins for individual genes are approximately log-normal (a normal
distribution on a logarithmic scale), with the mean being considerably larger than
the median, owing to the long tail to the right. With such distributions, the smallest
known cells are on the edge of having just one (or fewer) proteins per cell for some
genes. For a cell the size of E. coli, ∼ 1 µm3, a substantial number of genes are
represented by fewer than 100 protein molecules per cell (Figure 7.4). This means
that genetically identical offspring resulting from binary fission can vary substan-
tially in their protein contents. If each of the n copies of a protein in a parental cell
is randomly partitioned to daughters, the coefficient of variation (ratio of standard
deviation to the mean) among sisters will equal

√
1/n.

What do the preceding numbers mean in terms of cellular concentrations? Fo-
cusing on the number of proteins representing an average gene, Equation 7.2b, the
concentration on a per µm3 basis becomes 1700V −0.33. Multiplying this by 1015 µm3

/ liter, and dividing by the number of molecules per mole (Avogadro’s number,
6.023 × 1023), we obtain an average concentration of 2.82V −0.33 µM (µmoles/liter,
with 1 µmole = 10−6 moles). With protein numbers 10× above and 10× below the
average, this concentration would be multiplied by 10 and 0.1, respectively. Thus,
cellular concentrations of proteins are typically in the nM (nanomolar, or 0.001 µM)
to µM range, with concentrations tending to decline with increasing cell volume.

The situation is much more extreme for messenger RNAs (Figure 7.4), as even
large, well-nourished cells typically harbor only a few tens of thousands of mRNAs.
Again, gene-specific copy numbers per cell have a roughly log-normal distribution
over the full set of expressed genes, but the mean number per gene is generally on
the order of just one to ten. As a consequence of the very low mean, a substantial
number of genes are at least transiently devoid of transcripts in small cells, and this
is even true for a small subset of genes in species with the largest of cells. Although
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the data are less extensive, the total number of transcripts per cell and the mean
number per gene scales with the ∼ 1/3rd power of cell volume.

As will be discussed in Chapter 8, the numbers of ribosomes per cell also scale
uniformly across the Tree of Life with cell volume. Here, however, cells are much
more guarded against stochastic loss, as the average number per cell is generally
> 100 even in the smallest cells, ranging up to 108 in the largest cells. This should
not be too surprising, as complete loss of ribosomes constitutes a death sentence.

Passive Transport of Particles Through the Cytoplasm

To carry out their key functions, biomolecules often have to travel to particular des-
tinations and/or encounter specific substrate molecules. Except for large complexes
and cargoes within vesicles in eukaryotic cells, most molecules spend the majority
of their time moving by passive diffusion. Thus, to understand the ultimate bio-
physical constraints on cellular functions, we require information on how rapidly
molecules can diffuse from one location to another. Due to background thermal mo-
tion, each molecule of the cell is continuously jostled in random ways (often referred
to as Brownian motion), and until encountering an impervious barrier, such as the
cell membrane, will diffuse at a roughly constant average rate, depending on the
nature of the medium. The average distance moved after t time units is a function
of the diffusion coefficient D, defined as the average squared distance of molecular
movement per unit time (Foundations 7.1).

The reason for focusing on the squared distance is most easily understood in the
context of a random one-dimensional diffusion process. In this case, at each time
point a particle has an equal probability of moving to the left vs. the right, so the
average directional movement of particles is zero. Nonetheless, when molecules move
randomly, such that there is no memory in the process, the noise of each incremental
move is cumulative, so although the mean location remains constant, with increasing
time a diminishing fraction of molecules will remain in the vicinity of their initial
location. The probability distribution of locations of individual molecules becomes
wider and wider with time (t), with standard deviation

√
2Dt in the case of a one-

dimensional process. (Taking the square root of the mean-squared distance provides
a measure of dispersion on the original scale).

Not all diffusion processes in biology are one dimensional. Diffusion of individ-
ual molecules within a fluid lipid membrane is a two-dimensional process, whereas
diffusion through the cytoplasm is three-dimensional. There is, however, a simple
algebraic relationship between the expected magnitude of diffusion and the dimen-
sionality of the process. As just noted, under one-dimensional diffusion, a particle
can move in only two directions, right vs. left. Adding a dimension increases the
magnitude of dispersion, owing to the reduction in the degree of back-tracking (Fig-
ure 7.5). For example, considering a two-dimensional grid, a particle can move in
four directions (e.g., north, south, east, west), and on a three-dimensional lattice,
there are six possible routes of movement. In these higher-dimensional cases, the
dispersion distance must be viewed as the radial (straight-line) distance from the
initial point, and with two and three-dimensional diffusion, the root mean-squared
distance after t time units becomes

√
4Dt and

√
6Dt, respectively. Thus, the rate of
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diffusion relative to an initial location increases with dimensionality, but the scaling
with the square root of time is retained. From these expressions, it can be seen that
for an n-dimensional process, the expected time required for a particle to move an
absolute distance of d units is d2/(2nD).

To understand the implications of diffusive movement for cellular processes, we
require information on how the diffusion coefficient depends on the features of a
particle and the medium through which it moves. In its most elementary form, a
diffusion coefficient is defined as

D =
kBT

γ
, (7.5)

where kB is the Boltzmann constant (1.38×10−16 cm2· g · sec−2· K−1), which relates
energy at the particle level to temperature T in degrees Kelvin, and γ is the friction
coefficient, which is a net measure of the resistance imposed on particle movement
by the medium (with units of g · sec−1). The form of this expression is reasonably
intuitive – the numerator is a measure of the jostling due to thermal noise, and the
denominator is a measure of resistance to such jostling. Because most of life (other
than thermophiles) exists in the range of T ' 280 to 315 K, T can be approximated
as 300 K with only slight loss of accuracy. A sampling of diffusion coefficients for
small molecules in an aqueous environment is provided in Figure 7.6.

The friction coefficient depends on the medium as well as on the shape and
form of the particle, and many expressions have been developed to accommodate
such effects (He and Niemeyer 2003; Dill and Bromberg 2011; Soh et al. 2013).
For a perfectly spherical particle with radius r (in units of cm), the Stokes-Einstein
equation tells us that

γ = 6πηr, (7.6)

where π ' 3.142 is the universal constant (equal to the ratio of a circle’s circumference
to diameter), and η is the viscosity of the medium (with units g · cm−1· sec−1). For
water, η is temperature dependent, taking on values of 0.013, 0.011, 0.010, 0.0089,
and 0.0080 g · cm−1· sec−1 at 10, 15, 20, 25, and 30◦C. For simplicity, the 20◦C value
will be assumed in the following calculations. The diffusion coefficient of a sphere
in a typical aqueous environment then becomes

D ' 22× 10−14

r
, (7.7)

where the numerator has units cm3/sec, and r has units of cm. A change of units
leads to D ' 22× 10−6/r µm2/sec if r is in units of µm, and D ' 22/r nm2/sec if r is
in units of nm.

Biology introduces two additional issues: 1) most biomolecules depart from a
perfectly spherical geometry; and 2) cytoplasm is substantially more viscous than
water. Here we will focus on proteins, which typically fold into specific globular
structures. The problem of particle shape can then be dealt with by resorting to
a measure of the effective particle radius. For the ideal case of perfectly packed
spherical proteins composed of NAA amino acids, the radius would scale as N

1/3
AA

(because the volume of a sphere is proportional to the cube of the radius). However,
empirical study implies that the average radius of gyration (in units of cm), which
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is equivalent to the root mean squared distance of a molecule’s parts to a central
point, scales as

rg = (2.2× 10−8)N0.4
AA (7.8)

(Hong and Lei 2009). Subdivision of proteins into domains, less than perfect packing,
and various elastic features may contribute to this elevated scaling relative to the
ideal situation. Tyn and Gusek (1990) find that a protein with radius of gyration
rg behaves hydrodynamically on average as though the radius is r ' 1.3rg. Applying
this correction factor and Equation 7.8 to Equation 7.7, we obtain an expected
diffusion coefficient for a protein in an aqueous environment of

D ' 770N−0.4
AA , (7.9)

with units of µm2/sec. Proteins diffuse at rates that are typically <10% of the rates
for individual amino acids (Figure 7.6).

The final issue to consider is molecular crowding. The internal milieu of a cell
is hardly the open-water environment assumed in most diffusion theory. Rather,
20 to 40% of the cytoplasmic volume of a typical cell is occupied by proteins and
other macromolecules (Zimmerman and Trach 1991; Luby-Phelps 2000; Ellis 2001),
so that the distance between proteins is on the order of the width of the proteins
themselves. This then raises questions as to how much the basic composition of
cells alters the freedom of movement of the very molecules upon which life depends.
On the one hand, molecular crowding reduces the volume that must be searched
to locate a small solute. But on the other hand, transient molecular confinement
can inhibit free diffusion of proteins. Although the net consequences of these effects
are minor for small metabolites, the diffusion coefficients for proteins are arguably
reduced by 10 to 50× in E. coli (Elowitz et al. 1999; Konopka et al. 2006; Nenninger
et al. 2010), and perhaps less so in eukaryotic cells (Luby-Phelps 2000; Dix and
Verkman 2008).

For example, green fluorescent protein (GFP), with a chain length of 238 amino
acids, has a diffusion coefficient of 87 µm2/sec in an aqueous environment, almost
exactly as predicted by Equation 7.9. In contrast, empirical estimates of GFP
diffusion within the cytoplasm of multiple bacteria (Caulobacter crescentus, E. coli,
Lactococcus lactis, and Pseudomonas aeruginosa) yields coefficients in the range of
5 to 15 µm2/sec (Konopka et al. 2009; Nenninger et al. 2010; Montero Llopis et al.
2012; Guillon et al. 2013; Mika et al. 2014), whereas they are on the order of 25 to 30
µm2/sec in the slime mold Dictyostelium and mammalian cells (Swaminathan et al.
1997; Potma et al. 2001). Large complexes diffuse much more slowly, the estimated
rate for a ribosome being 0.04 µm2/sec in E. coli (Bakshi et al. 2012). Membrane
proteins undergoing two-dimensional diffusion through a much more densely packed
lipid milieu have diffusion coefficients in the range of 0.02 to 0.03 µm2/sec in bacteria,
with the rate declining with the number of transmembrane domains in the protein
(Kumar et al. 2010; Mika et al. 2014).

Aside from the examples given above, the degree to which general diffusion
processes are sped up in eukaryotes remains uncertain. One issue is that the average
protein chain length for eukaryotes, NAA = 532, is 45 to 60% larger than the means
in bacteria (365) and archaea (329) (Wang et al. 2011). On this basis, assuming
similar folding architectures, all other things being equal, Equation 7.9 implies that
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a ∼ 1.5× increase in total chain length should yield a 15% reduction in the average
diffusion coefficient for proteins in eukaryotes. However, given that the density of
eukaryotic cytoplasm is lower that in prokaryotes, the reduced crowding effects may
essentially cancel this particle-size effect.

To appreciate the time scale of passive molecular diffusion, consider a protein
of moderate length with a diffusion coefficient of D ' 20 µm2/sec. In a three-
dimensional setting (e.g., cytoplasmic diffusion), the root mean-squared distance
traveled after t seconds will be

√
6Dt ' 11

√
t µm. The expected time to travel d

µm is then (d/11)2 sec. A spheroid bacterial cell with a 1 µm3 volume will have a
diameter of 1.2 µm, so it would take ∼ 0.01 seconds for the protein to travel the
length of the cell. For a moderate-sized eukaryotic cell with volume 100 µm3, the
diameter is 5.8 µm, and traversing the entire width requires ∼ 0.28 seconds. For a
large spherical cell with volume 105 µm3 (which is attained in some marine diatoms
and dinoflagellates), the diameter is 58 µm, so traversing the cell width requires
∼ 28 seconds.

Thus, molecular delivery across a cell based on diffusion alone is effectively
instantaneous in bacteria, and comes with no cost, as it is entirely fueled by back-
ground thermal noise. In contrast, diffusion becomes dramatically less efficient in
large eukaryotic cells, which often transport material by use of molecular motors,
which run on ATP (Chapter 16).

One final caveat with respect to all of the above results is that the viscosity
of cytoplasm appears to vary significantly with the level of cell nutritional state,
increasing in starved cells (Joyner et al. 2016). In addition, the diffusive properties
of proteins appear to coevolve with their proteomic environment. Mu et al. (2017)
found that when placed in the cytoplasm of E. coli, human proteins tend to stick
to their foreign environment, but with a few modified surface amino-acid residues
can achieve diffusion rates equivalent to the native E. coli proteins. Whether the
reduced density of cytoplasm in eukaryotic cells (assuming this is indeed general)
is an evolved feature to facilitate long-distance diffusion and/or results in relaxed
selection against protein stickiness remains a matter of speculation (Soh et al. 2013).

Intermolecular Encounter Rates

Most proteins do not operate in isolation. More often than not, they aggregate
into multimeric complexes, and most engage with particular substrate molecules.
Diffusion theory explains the rates of dispersion of individual particles, but here the
concern is with the rate of encounter of interacting particles, and how this depends
on particle sizes and concentrations. As an entrée into this area, we consider the
simple situation in which the two interacting particle types are products of the same
genetic locus, as in the case of two monomeric subunits coalescing to form a dimer, a
very common situation for proteins. (The more general case of two different particles
is derived in Foundations 7.2).

To move forward, we require a measure of the encounter rate per unit concen-
tration, ke, which is a function of the particle diffusion rate (Foundations 7.2) and
has units equal to events · cm3· sec−1. This must be multiplied by the product of
the concentrations of the particles to be joined to account for the fact that both
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interacting partners are randomly diffusing (in this particular example, each particle
has the same concentration [C]). The resultant rate of encounter per unit volume,
which has units of events · cm−3· sec−1, must then be multiplied by the cell volume
V in units of cm3 per cell to give the total rate of encounter events within the cell,
with one small modification. To account for the fact that a particle cannot interact
with itself, a correction factor of 1− (1/n) must be applied, where n = [C] · V is the
expected number of particles per cell. The final expression for the rate of encounter
then becomes

RE = Re · [C]2V [1− (1/n)] = [11.04× 10−12] · [C]2V [1− (1/n)] (7.10)

with units of events/cell/sec, where Re is the volume-specific encounter rate, and
the constant ke applies to the specific case of two spherical particles of the same size
(Foundations 7.2).

To gain some appreciation for the constraints on such encounters, and hence
the viability of a strategy to dimerize, consider a cell with a 1 µm3 volume (bac-
terial sized) and a molecule with a concentration of 1 µM, which as noted above
is within the range typically seen for proteins. Using the conversions 106µM/M,
1000 cm3/liter, and 6.023 × 1023 molecules/M, a 1 µM concentration transforms to
[C] = 6.023× 1014 molecules/cm3. Thus, because there are 1012 µm3 in 1 cm3, the 1
µm3 cell is expected to contain n ' 602 molecules, enough that the correction factor
has essentially no effect. Application of Equation 7.10 then leads to an encounter
rate of 4 × 106 events/cell/sec. Increasing the concentration by a factor of x will
increase the encounter rate (Re) by a factor of x2.

Owing to the necessity of finding a binding partner, decreasing [C]2 and/or V
begins to have a nonlinear effect at sufficiently low values. For example, if the
concentration is reduced to 0.01 µM, the expected number of molecules/cell is re-
duced to n ' 6, and the encounter rate becomes ∼333 events/cell/sec. Reducing
the cell volume to 0.1 µm3, then n < 1, and a protein would almost always be with-
out partners in a cell. These results demonstrate that constraints on the number
of molecules that can be contained within small cells (Figure 7.4) must ultimately
limit the reaction rates that can be carried out (Klumpp et al. 2013).

Temperature-dependence of Biological Processes

Through its effects on rates of molecular motion, temperature influences virtually
all biological processes. For most simple chemical interactions, elevated temperature
increases the reaction rate, at least up to the point beyond which the stability of the
reactants is compromised. Chemical reaction rates depend on the frequency of suc-
cessful encounters between participating molecules, and most reactions require some
amount of energy to go forward. The energetic barrier to a reaction is called the
activation energy, Ea, with a higher value of Ea implying a slower response to tem-
perature. A powerful result from statistical mechanics, the Boltzmann distribution,
relates the distribution of energy states of molecules to the ambient temperature
(Foundations 7.3).

This distribution has the useful property of being exponential in form, with the
mean energetic state of molecules being the familiar kBT. For a system in thermo-
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dynamic equilibrium, the fraction of molecules with an energetic state above the
activation energy is simply

fe = e−Ea/(kBT ). (7.11)

As temperature increases, more molecules have high enough energy to overcome the
activation barrier, and fe → 1 at a rate that depends on Ea. The overall reaction
rate is the product of the encounter rate and the fraction of successful encounters,

Rtot = RE · fe = RE · e−Ea/(kBT ) (7.12)

Taking the log of this expression demonstrates that a plot of the log of a reaction
rate against the inverse of temperature (1/T ) is expected to yield a straight line

ln(Rtot) = a− b(1/T ) (7.13)

with the slope b estimating −Ea/kB, and the intercept a being an estimate of the
log of the encounter rate. (It may be noticed from Equation 7.2.2 that temperature
appears in the expression for RE as well as that for fe, but because the relationship
is linear for Re and exponential for fe, the temperature scaling associated with
the latter dominates the overall behavior, and the former is generally ignored).
Because kB is a constant, Equation 7.13 provides a simple means for estimating the
activation energy of a reaction. Such an inverse relationship between the rate of
a molecular reaction and 1/T is known as Arrhenius rate behavior, after its early
advocate (Arrhenius 1889), who derived the expression in a different way than the
approach used in Foundations 7.3.

Although the Arrhenius equation often provides an excellent description of the
temperature-dependence of simple chemical reactions, organisms consist of mixtures
of hundreds to thousands of biomolecules. Each biochemical reaction will have its
own activation energy, with the concentrations and stabilities of the interacting part-
ners changing with environmental conditions, including temperature (e.g., Hunter
and Rose 1972; Alroy and Tannenbaum 1973; Herendeen et al. 1979). Many of
these reactions will operate in parallel (as, for example, independent pathways for
uptake of different nutrients), whereas others will operate in series (as in consecutive
steps in metabolic pathways). Thus, although there may be one rate-limiting step
at any particular temperature, the nature of this step (and its associated activation
energy) is likely to change among temperatures. Further complicating matters is
the fact that complex biomolecules tend to become increasingly unstable at high
temperatures and can have altered properties at low temperatures (Dill et al. 2011).

All of these issues motivate the question as to whether the rates of higher-order
biological functions scale in accordance with Equation 7.13, and if they do, whether
there is any simple mechanistic interpretation of the fitted slopes and intercepts. At
best, any estimate of Ea for a cell-biological process would seem to be a composite
“effective” barrier to activation of the process. Nonetheless, it is often argued that
biological processes such as metabolic and developmental rates, and the “rate of
living” (inverse of life span), scale in close accordance with the Arrhenius equation,
at least below temperatures at which key molecular/cellular processes begin to break
down (Gillooly et al. 2001; Savage and West 2006).

Herein lies the problem. Although the range of temperatures consistent with
Arrhenius rate behavior are often referred to as being “biologically relevant,” this is
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usually little more than a matter of convenience, with the edges of such regions often
being quite arbitrary. When taken to even moderately extreme temperatures, the
responses of cellular growth rates to temperature are virtually always curvilinear, in
contrast to the expectations from Equation 7.13, with the optimal temperature and
the form of the response curve often varying substantially among species (Figure
7.7). Not all biological rates scale exponentially with temperature even within the
range of “meaningful” temperatures, with the response of growth rate to tempera-
ture being arguably linear in various unicellular eukaryotes (Montagnes et al. 2003).
Nor do all biological features respond in a positive way to a thermal increase. For
example, the cell sizes of unicellular eukaryotes often decline by ∼ 2 to 4% for each
1◦C increase in temperature (Montagnes and Franklin 2001; Atkinson et al. 2003).

Some have suggested that these kinds of variations in temperature response
curves can be accommodated by relatively simple modifications of the Arrhenius
equation, e.g., by subtracting or dividing one exponential expression by another to
account for contrasting responses of cell features to temperature (Mohr and Kraweic
1980; Ratkowsky et al. 1983, 2005; Corkrey et al. 2014). For example, Dill et al.
(2011) show how deviations from ideal Arrhenius behavior can be accommodated
by multiplying Equation 7.11 by a function that accounts for increasing protein de-
naturation with temperature. Although the fits of such mathematical relationships
to biological features are often quite good over a substantial temperature range,
caution is warranted in attaching too much biological meaning to them. With four
or more parameters, a wide variety of nonlinear functions can yield essentially iden-
tical fits to the same data. Indeed, more than 24 alternative mathematical functions
for describing the relationship between reaction rates and temperature have been
proposed (Noll et al. 2020).

One of these alternatives is a common rule-of-thumb in biology, the so-called Q10

rule, which states that biological rates typically increase by a factor of 2 to 3 with
a 10◦C increase in temperature (Raven and Geider 1988), again with a presumed
focus on a “biologically relevant” temperature range. The idea was first raised by
Arrhenius’ Ph. D. advisor, Van’t Hoff, and can be crudely related to the Arrhenius
equation. For example, considering two commonly used temperatures, 12 and 22◦C
(i.e., T = 285 and 295), then from Equation 7.11 the ratio of Arrhenius rates at the
high vs. low temperature is ∼ e0.00012(Ea/kB). Because e1 ' 2.72 (a value within the
range of commonly observed Q10 estimates), this implies that Ea/kB must typically
be on the order of (1/0.00012) = 8333. However, somewhat different results will be
obtained with different limits on the temperature range. For example, applying
temperatures of 22 and 32◦C yields a ratio of e0.00011(Ea/kB). Assuming Ea/kB = 8333
still holds, this would imply Q10 = 2.52. Thus, the Q10 approach is an approximation,
albeit a fairly good one, if the system behaves in accordance with the Arrhenius
equation, and there is little justification for claiming superiority of one approach
over the other.

Energy, Carbon Skeletons, and Cell Yield

Heterotrophic organisms incapable of fixing CO2 are reliant on the uptake and as-
similation of organic compounds for the production of new cellular biomass. The
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key materials consist of reduced carbon compounds containing hydrogen, usually
with some oxygen, nitrogen, phosphorus, and/or sulfur atoms also present. These
substances are almost always ultimately derived from cellular materials or excretory
products of photoautotrophs, with many undergoing secondary modification in her-
bivores and detritivores before again being ingested. Food materials provide both
the carbon skeletons necessary for biosynthesis of the monomeric building blocks
of the cell, e.g., amino acids, nucleotides, and lipids, and the stored energy for
subsequent transformation into the cell’s energetic currency, ATP.

The organic composition of food ultimately dictates the rate at which a het-
erotroph can invest biomass and energy into self-maintenance, growth, and reproduc-
tion. In the organism, as in the furnace, the oxidation of organic substrates releases
energy. The maximum amount of extractable energy of a substance is equivalent to
its heat of combustion, ∆HC , with the absolute limit to biological energetics being
set by the product of the latter and the consumption rate (ignoring the costs of
building and maintaining the metabolic machinery itself).

A deeper understanding of the biological relevance of heats of combustion can
be achieved by considering the chemical composition of a substrate and the fates of
carbon-associated electrons upon combustion. Kharasch and Sher (1925) classified
organic compounds on the basis of the number of electrons that experience a tran-
sition from a methane-type bond (C-H) to a carbon dioxide-type bond (C=O) upon
combustion,

NE = 4NC +NH − 2NO (7.14)

for a molecule containing NC carbon, NH hydrogen, and NO oxygen atoms. The
structure of this expression follows from the fact that each carbon atom has four
outer-shell (valence) electrons of its own, sharing one additional electron with each
bonded hydrogen atom and two with each bonded oxygen. The electrons shared with
each hydrogen atom are free to move upon combustion, whereas the two associated
with each oxygen are already in the position expected after oxidation. Complete
combustion reconfigures hydrogen atoms into water, and oxygen atoms into CO2,
which from Equation 7.14 has NE = 0. For glucose, C6H12O6, NE = 24.

For carbon substrates commonly employed in laboratory growth experiments
with aerobic heterotrophs, this composite measure of the degree of electron move-
ment upon transformation to CO2 and water is nearly perfectly correlated with
known heats of combustion determined in chemistry labs (Figure 7.8), with ∆HC

(in units of kcal/mol) being closely approximated by 27NE. Extensions to organic
substrates containing nitrogen and/or sulfur have been presented by Kharasch and
Sher (1925) and Williams et al. (1987).

These purely physico-chemical descriptors of substrate molecules are informative
with respect to growth rates of pure cultures of unicellular organisms raised in
chemostats (Chapters 8 and 17). With a single substrate being the sole source
of carbon and energy (and all other nutrients in excess supply), the growth of cells
per unit resource consumption is readily calculated from the substrate concentration
observed in the inflow and outflow. A compilation of data from a diversity of studies
indicates that the growth yield (g cell dry weight/g carbon consumed) increases with
the heat of combustion per carbon atom in the substrate, with no obvious differences
between bacteria and eukaryotes (Figure 7.8). However, beyond the point at which
the caloric content of the substrate exceeds 10 kcal/g carbon, the cell yield becomes
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approximately constant at ∼ 1.4 g dry weight/gram carbon consumed. Because
the values in Figure 7.8 are derived from cultures growing at maximum rates, only
a small fraction of the cell’s energy budget is allocated to maintenance (Chapter
13), so the estimates provided are close to the maximum yields associated with the
substrate.

This overall pattern, first suggested by Linton and Stephenson (1978), with
many fewer data than in Figure 7.8, implies that for low-energy substrates (heats of
combustion < 10 kcal/g carbon), heterotrophic cells are intrinsically energy limited,
i.e., they are incapable of experiencing the maximum possible yield of ∼ 1.4 g dry
weight/g carbon consumed. Above a substrate heat of combustion of 10 kcal/g
carbon, the constant cell growth yield per unit carbon implies a progressive decline in
the efficiency of energy extraction with increasing energetic content of the substrate.
Thus, an energy content of ∼ 10 kcal/g carbon appears to separate a lower domain in
which the substrate provides insufficient energy to assimilate the available carbon
from an upper domain where energy is in excess of the requirements for carbon
assimilation.

Finally, recalling from above that the average fractional carbon mass per cell
dry weight is ∼ 0.5, the cell yields in Figure 7.8 can be rescaled to units of g cellular
carbon/g substrate carbon, providing a measure of assimilation efficiency for carbon.
With the dry-weight cell yields per g substrate carbon being in the range of 0.8
to 1.6 for nearly all common substrates (Figure 7.8), this implies typical carbon
assimilation efficiencies in the range of 0.4 to 0.8. After nearly four billion years,
this is the best that evolution has been able to achieve. 100% conversion of substrate
carbon into biomass is unobtainable, as energy must be extracted from some of the
substrate to carry out cellular functions, and some carbon is lost as CO2.

Summary

• Between one-fifth and one-third of the wet weight of cells consists of H2O, eu-
karyotic cells being more watery than those of bacteria. Across the Tree of Life
∼ 50% of cell dry weight is comprised of carbon atoms, and one- to two-thirds of
the dry weights of most cells consist of protein.

• The unique physical properties of water govern almost every aspect of biology,
as they dictate the folding stability of proteins, the ability of lipid molecules to
aggregate into membranes, the diffusion rates of molecules, and the challenges to
motility.

• Of the 20 chemical elements essential to life, many have intracellular concen-
trations enriched by factors of 103 to 106 relative to environmental levels. Such
factors are equivalent to the volume of the environment relative to cell volume
that needs to be fully harvested to produce an offspring cell.
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• Despite its centrality to life, the fractional contribution of genomic DNA to
cellular biomass scales negatively with cell volume, declining from ∼ 10% in the
smallest bacterial cells to < 0.001% in the largest eukaryotic cells.

• Both the total number of protein molecules per cell and the average number
per gene increase sublinearly with cell volume, consistent with larger cells be-
ing less dense with biomaterials. Messenger RNAs are typically 100- to 104-fold
less abundant per cell than their cognate proteins, with the mean number per
gene often being in the range of 1 to 10. With the distributions of both mR-
NAs and protein molecules per gene per cell being approximately log-normal in
form, there can be significant stochastic variation in gene expression among ge-
netically uniform cells. Moreover, there must be a lower bound to cell size below
which adequate numbers of adequate molecules can be harbored to sustain key
biochemical reaction rates.

• Many molecules travel through cells by passive diffusion processes. Fueled by
background thermal noise, such transport imposes no costs to the host cell. For
small bacterial-sized cells, an average protein can diffuse across a cell diameter in
several milliseconds, whereas in some of the larger eukaryotic cells such a sojourn
can require up to half a minute. Thus, diffusion limits to intracellular transactions
can ultimately constrain the rates of biological processes in eukaryotic cells.

• Through its influence on the motion of all molecules, temperature plays a gov-
erning role in all reaction rates. A number of mathematical expressions, many
derived from physical chemistry, have been proposed as summary descriptors for
the response of biological processes to temperature, although the mechanistic
interpretation of the fitted parameters is open to debate.

• All life ultimately depends on the acquisition of energy. For aerobic heterotrophs
(most organisms other than photosynthesizers), food comes in the form of re-
duced carbon compounds, which provide both carbon skeletons for constructing
biomass and energy for carrying out cellular functions. The heats of combustion
of substrates provide a reliable measure of the energy that can be extracted from
such compounds. More reduced carbon compounds provide more energy, but
there is an intermediate level of substrate reduction (approximately equivalent
to that in glucose) above which carbon starts to be limiting.

• The upper limit of evolved assimilation efficiency of carbon compounds (in units
of carbon atoms incorporated into biomass per atoms ingested) is ∼ 0.8.
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Foundations 7.1. Intracellular diffusion. In a homogeneous medium, small par-
ticles are subject to random walks as a consequence of background thermal pertur-
bations, gradually moving out from a starting location in a symmetric fashion. To
keep the mathematical details down to a manageable level, the focus here will be on a
one-dimensional diffusion process, with a summary of the general results for two and
three dimensions following the initial details.

Consider a particle moving randomly to the right and left with equal probabilities
of 0.5 and fixed jump lengths, independent of prior motion. Let t be the total number
of jumps, with t+ being the number to the right and t− the number to the left, so that

t = t+ + t−,

with the net displacement relative to a starting point at position 0 being

x = t+ − t−.

Given t jostling episodes, the probability of t+ draws in the positive direction is given
by the binomial distribution

P (x) =
t!

t+!t−!

(
1
2

)t+ (1
2

)t−t+

=
t!

t+!t−!

(
1
2

)t

, (7.1.1a)

where y! = y · (y − 1) · (y − 2) · · · 1 is the factorial function.
For large t, this discrete-state formula can be simplified to a continuous distribu-

tion by first noting that t+ = (t+x)/2 and t− = (t−x)/2, substituting into Equation
7.1.1a, and then logarithmically transforming to obtain

ln[P (x)] = ln(t!)− ln
{[

t

2

(
1 +

x

t

)]
!
}
− ln

{[
t

2

(
1− x

t

)]
!
}
− t ln 2. (7.1.1b)

Factorial functions can be unwieldy, but large t allows the use of Stirling’s approxima-
tion for the logarithm of large factorials,

ln(y!) ' ln(2πy)
2

+ y ln(y)− y, (7.1.2)

application of which simplifies Equation 7.1.1b to

ln[P (x)] = ln[(2/πt)0.5]−
(
t+ x+ 1

2

)
ln
(

1 +
x

t

)
−
(
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2

)
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(

1− x

t

)
.

Further simplification is accomplished by noting that for y < 0.5,

ln(1 + y) ' y − (y2/2), (7.1.3a)
ln(1− y) ' −y − (y2/2). (7.1.3b)

Application of these approximations to the preceding expression, followed by exponen-
tiation to return to the original scale eventually leads to

P (x) '
(

2
πt

)1/2

exp
(
−x

2

2t

)
. (7.1.4a)
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We now modify Equation 7.1.4a to a more familiar and general form. First, we
note that the variance in the number of jumps to the right follows from the properties
of the binomial distribution – when the probability of each type of event is 0.5, the
binomial variance associated with each event is 0.5 · 0.5, and summing over t inde-
pendent events leads to variance σ2 = t/4. Second, the disparity between numbers of
right and left jumps, x, can be rewritten as (t+ − t−) = (2t+ − t), and because the
expected number of jumps to the right (the mean) can be written as µ = t/2, this
further reduces to x = 2(t+ − µ). Substituting the latter expression and t = 4σ2 into
Equation (7.1.4a), we obtain

P (t+) =
(

1
2πσ2

)1/2

exp
(
− (t+ − µ)2

2σ2

)
. (7.1.4b)

This is the widely used normal or Gaussian distribution of a variable (in this case t+)
with mean µ and variance σ2.

In the current case, diffusion results in movement from the initial point, but with
no net bias, so we can rescale to a mean of zero, and the variance σ2 can be written
as the mean-squared deviation 2Dt, where D is the diffusion coefficient, with units
of length2/time (see main text). The one-dimensional diffusion distance d then has
probability distribution

P (d) =
(

1
4πDt

)1/2

exp
(
− d2

4Dt

)
. (7.1.4c)

Note that in the one-dimensional case, the diffusion variance is proportional to
2D, and increases linearly with time. In two dimensions, the variance becomes 4Dt,
and with three dimensions, it becomes 6Dt. The standard deviation is the root mean-
squared distance that a particle is expected to have traveled (with equal probability
in all directions) after t time units. Thus, the expected distance traveled increases
with the square root of time. Berg (1993) provides a useful compendium of results
and biological applications of diffusion theory.

Foundations 7.2. Rates of encounter by molecular diffusion. A purely phys-
ical limit to the encounter rate between two molecules can be derived from diffusion
theory developed by Smoluchowski (1915), who independently of Einstein outlined a
number of the general principles of Brownian motion. We start by considering the
random diffusion of two spherical molecules, with respective radii ra and rb, moving
randomly through an otherwise homogeneous environment. A collision between these
two molecules will occur whenever their centers come within a distance rc = ra + rb
from each other. To simplify the overall analysis, one may then consider an imaginary
sphere around either particle, with radius rc, whose overall surface area 4πr2c repre-
sents the entire boundary across which a flux of one particle or the other constitutes
a collision (Figure 7.9).

To proceed further, we require the total rate of particle movement, which is
determined by the sum of the diffusion coefficients associated with each particle type.
From Equations 7.5 and 7.6,

D = Da +Db =
kBT (ra + rb)

6πη(rarb)
, (7.2.1)

with units of cm2/sec, where (as defined in the text), kB is Boltzmann’s constant, T
is the temperature (in Kelvins), and η is the viscosity of the medium (see main text
for the assumed values of these parameters).
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To complete the derivation of the encounter rate, we require an expression for
the rate of diffusion across a surface. This is given by Fick’s first law, which states
that the flux rate of a diffusing substrate across a point is equal to the product of the
concentration gradient at that point and the diffusion coefficient. The concentration
gradient can be approximated by treating the concentration inside the sphere of radius
rc as zero and denoting the bulk concentration (outside the sphere) as [C], implying a
concentration gradient of ([C]− 0)/rc and flux rate [C]D/rc. After multiplying by the
total surface area (4πrc) and dividing by the concentration, this scales up to a flux
rate per unit concentration of (4πr2c )(D/rc) = 4πrcD. Substituting Equation 7.2.1 for
D, we then obtain an expression for the encounter-rate coefficient,

ke = 4πrcD =
(

2kBT

3η

)(
(ra + rb)2

rarb

)
. (7.2.2)

After substituting for the average temperature of life and the viscosity of water
(see main text),

ke = (2.76× 10−12)
(

(ra + rb)2

rarb

)
, (7.2.3)

with units cm3· sec−1 for ke and cm for the radii. The product of this encounter-rate co-
efficient and the concentrations of both particle types (each in units of molecules/cm3)
yields the expected number of collisions between the two particle types in a 1 cm3 vol-
ume per second,

Re = ke[Ca][Cb]. (7.2.4)

For two spherical particles identical in size (ra = rb, as in the case of two
monomeric subunits forming a homodimeric protein), Equation 7.2.3 reduces to

ke = 11.04× 10−12. (7.2.5a)

In this case, the rate coefficient is independent of the particle size because any increase
in target size is perfectly balanced by a reduction in the rate of diffusion. On the other
hand, if one particle type is much larger than the other, rb � ra,

ke ' (2.76× 10−12)
(
ra
rb

)
, (7.2.5b)

showing that the encounter rate depends only on the ratio of particle sizes, not on
their absolute sizes. The encounter rates denoted by these expressions are sometimes
referred to as the Smoluchowski limits.

Foundations 7.3. The Boltzmann probability distribution for alternative
molecular states. Numerous situations are encountered in cell biology where it is
necessary to know the distribution of alternative states of the individual members of
a population of molecules, as these often determine the average rates and stochastic-
ities of cellular processes. Theoretical results in this area are generally derived from
the field of statistical mechanics, which takes a microscopic view of particle states
within a closed system assumed to be in thermodynamic equilibrium. There are nu-
merous ways to achieve the final result (e.g., Schroeder 2000; Phillips et al. 2012). The
route taken here uses the properties of combinatorics, along with a few mathematical
approximations.

The starting assumption is a system containing n molecules, which together
harbor a fixed amount of energy, Σ. We assume discrete energy states, taking on
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values of 0, ε, 2ε, . . . , kε, so N = Σ/ε represents the total number of discrete energy
packets available to the system. Individual particles are free to change energy states,
but the overall probability distribution of alternative states remains constant under
the assumption of equilibrium. It is this equilibrium probability distribution that
we wish to determine, i.e., the probability that a random particle is in energy states
i = 0, 1, . . . , k. To accomplish this, we must account for the full distribution of the
alternative states that a set of n molecules can take on, conditional on the sum of
their states equaling N. Given the large number of particles typically involved, this
can be a dauntingly complex problem, but a few mathematical tricks simplify the
overall derivation.

We first note that the total number of ways that N packets of energy can be
partitioned among n molecules is given by

T (N,n) =
(N + n− 1)!
N !(n− 1)!

, (7.3.1a)

where ! denotes the factorial function. To obtain this general result, note that there
are n bins within which N energy packets must be partitioned. The numerator is the
total number of ordered ways that N distinct packets can be randomly assigned to
n bins. But because the energy packets are all identical in content, the ordering in
which they are assigned is irrelevant, and the two terms in the denominator discount
the numerator to account for the redundancy associated with ordering of packets and
bins.

Now consider the situation where one specific molecule has energy iε, so there
are a remaining (N − i) packets to partition among (n − 1) molecules. Modification
of the previous expression then leads to

T (N − i, n− 1) =
(N + n− 2− i)!
(N − i)!(n− 2)!

. (7.3.1b)

Thus, the probability of a particle having energy content iε is

p(i) =
T (N − i, n− 1)

T (N,n)
= (n− 1) · N !(N + n− 2− i)!

(N − i)!(N + n− 1)!
. (7.3.2)

Further simplification is possible if it is assumed that the energy in the system is
substantial enough that N � n, which makes reasonable the approximations N !/(N−
x)! ' Nx, and n/(N+n) ' n/N. Noting as well that the number of molecules is large,
so that n− 1 ' n,

p(i) ' nN i · (N + n)−(i+1) =
n

N
· [1 + (n/N)]−i, (7.3.3a)

which further reduces to
p(i) ' n

N
· e−in/N , (7.3.3b)

using ex ' (1 + x) for x � 1. Thus, what started as a complex problem reduces to a
relatively simple expression (a negative exponential distribution) under the assumption
of large numbers.

Letting E = Nε/n denote the average energy per particle, the preceding expres-
sion implies that the probability of a particle having energy state Ei = εi is

p(Ei) = C · e−Ei/E , (7.3.4)
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where C is a normalization constant that ensures that the total probability distribution
sums to 1.0, satisfied in this case by C = 1/E. Letting E = kBT be the average energy
per particle yields the Boltzmann distribution,

p(Ei) = C · e−Ei/(kBT ). (7.3.5)

Note that the cumulative function for this exponential distribution, which defines the
probability of being in a state below Ei is 1− e−Ei/E .

Foundations 7.4. The yield of cellular biomass per ATP usage. The preceding
observations allow for a crude estimate of the amount of energy required (in terms of
ATP→ ADP hydrolyses) to build new cellular material, an issue that will be addressed
in more detail in Chapter 17. Here we will assume a relatively high-energy carbon
substrate with a heat of combustion of 9.3 kcal/g C (carbon), the approximate value
for most six-carbon sugars (including glucose). From Figure 7.8, such a substrate
leads to an expected 1.3 g DW (dry weight) produced/g C consumed, which implies
(1/1.3) = 0.77 g C consumed/g DW produced. Multiplying by 9.3 kcal/g C leads to
an estimated cellular energy-intake requirement of 7.2 kcal/g DW produced.

How much of this required consumption is diverted to energy production for cell
functions? Surveys of multiple bacterial and eukaryotic species suggest average caloric
contents of 5.41 (0.05) and 5.13 (0.04) kcal/g cell DW (Chapter 17), respectively,
and a value of 5.3 will be assumed here. This implies that of the potential 7.2 kcal
consumed/g DW produced, 7.2−5.3 = 1.9 kcal (26%) must be used in cellular processes
required to produce new cellular material (with the rest of the substrate providing
carbon skeletons used in the construction of the monomeric building blocks of the
cell). Thus, ∼ 0.77 × 0.26 = 0.20 g C of substrate must be converted to energy in
order to produce 1 g of cell DW.

What does this energetic investment mean in units of ATP, the cellular currency
of bioenergetics? One mole of glucose contains 72 g C, and assuming complete aerobic
metabolism, observations from biochemistry tell us that each mole of metabolized
glucose generates ∼ 38 mol of ATP. This suggests that, in units of ATP, the energetic
requirement for the production of 1 g DW of cells is ∼ 0.20 g C consumption × (1
mole glucose/72 g C) × (38 mol ATP/mole glucose) = 0.11 mol ATP. It then follows
that the yield of cells is ∼ 1/0.11 = 9.5 g DW/mol ATP. This rough estimate is quite
close to an average value of 10.5 for more direct estimates found in a wide variety of
organisms raised on a diversity of carbon substrates (Payne 1970).
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