Pubmed logo      Google Scholar

*authors contributed equally


  1. F. Djutanta, R. Kha, B. Yurke, and R. F. Hariadi, “Producing cell-like structures from oil films residing on ocean water by raindrop impact”. (in preparation)
  2. R. M. Shetty, S. Brady, E. Le, F. Djutanta, P. W. K. Rothemund, R. F. Hariadi∗, and A. Gopinath∗, “Facile, cleanroom–free fabrication of single molecule nanoarrays”. (in preparation)
  3.  R. Rezvani∗, B. Horne∗, F. Djutanta, D. Showkeir, and R. F. Hariadi,“Low-cost LEGO-based sucrose gradient mixer for purification of DNA-origami nanostructures”. 


  1.  L. Green, H. K. K .Subramanian, V. Mardanlou, J. Kim, R. F. Hariadi, and E. Franco, “Autonomous dynamic control of DNA nanostructure self-assembly”, Nature Chemistry, 11, 510–520 
  2. I. Sgouralis, S. Madaan, F. Djutanta, R. Kha, R. F. Hariadi, and S. Pressé, “A Bayesian Nonparametric Approach to Single Molecule FRET”, J. Phys Chem B., 123(3), 675-688.


  1. V. Mardanlou, L.N .Green, Hari K.K. Subramanian, R.F. Hariadi, J.Kim, and E.Franco,“A coarse-grained model of DNA nanotube population growth”, International Conference on DNA-Based Computers, 135–147. 
  2. R. F. Hariadi*, A. Appukutty*, and S. Sivaramakrishnan, “Engineering circular gliding of actin filaments along myosin-patterned DNA nanotube rings to study long-term actin-myosin behaviors”. ACS Nano, 10(9),8281–8288. 
  3. R. F. Sommese, R. F. Hariadi, M. J. Tyska, M. A. Titus, S. Sivaramakrishnan, “Precise patterning proteins on DNA nanostructures using a GFP-Nanobody”. Protein Science, 25(11),2089–2094.


  1. R. F. Hariadi, E. Winfree, and B. Yurke, “Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics”, PNAS, 2015, Vol. 112, E6086–E6095.
  2. V. Verma, L. Mallik, R. F. Hariadi, S. Sivaramakrishnan, G. Skiniotis, A. P. Joglekar, “Maximizing protein hybridization efficiency on multisite DNA origami scaffolds using protein dimerization”, PLoS One, 2015 10(9): e0137125.
  3. R. F. Hariadi*, R. F. Sommesse*, A. Adhikari, R. Taylor, S. Sutton, J. Spudich, and S. Sivaramakrishnan, “Mechanical coordination in motor ensembles revealed using engi-neered artificial myosin filaments”, Nature Nanotechnology, 2015, Vol. 10, 696–700.
  4. R. F. Hariadi, R. F. Sommesse, and S. Sivaramakrishnan, “Tuning myosin-driven trans-port on cellular actin networks”, eLIFE, 2015, Vol. 4, e05472.
  5. Y. H. Tee, T. Shemesh, V. Thiagarajan, R. F. Hariadi, K. L. Anderson, C. Page, N. Volkmann, D. Hanein, S. Sivaramakrishnan, M. Kozlov, and A. Bershadsky, “Cellular chi-rality arising from the self-organization of the actin cytoskeleton”, Nature Cell Biology, 2015, Vol. 4(17), 445–457.
  6. R. F. Hariadi, B. Yurke, and E. Winfree, “Thermodynamics and kinetics of DNA nanotube polymerization from single-filament measurements”. Chemical Science, 2015, Vol. 6, 2252–2267.


R. F. Hariadi, Mario Cale, and Sivaraj Sivaramakrishnan, “Myosin lever arm directs the emergence of collective movement patterns”, PNAS, 2014, Vol. 1111, 4091–4096.


D. Y. Zhang*, R. F. Hariadi*, M. T. Choi, and E. Winfree. “Integrating DNA strand displacement circuitry with DNA tile self-assembly”, Nature Communications, 2013, Vol. 4, 1965.


  1. C. G. Evans, R. F. Hariadi, and E. Winfree, “Direct atomic force microscopy obser-vation of DNA tile crystal growth at the single-molecule level”, JACS, 2012, Vol. 134, 10485-10492.
  2. R. F. Hariadi, “Non-equilibrium dynamics of DNA nanotubes”. California Institute of Technology, Thesis advisors: Erik Winfree – co-advised by Bernard Yurke.


R. F. Hariadi and B. Yurke, “Extensional-flow-induced scission of DNA nanotubes in laminar flow”, Physical Review E, 2010, Vol. 82, 046307.


  1. P. Yin, R. F. Hariadi, S. Sahu, M. T. Choi, S. H. Park, T. H. LaBean, and J. H. Reif, “Programming DNA tube circumference”, Science, 2008, Vol. 321, 824–826.
  2. K. Fujibayashi, R. F. Hariadi, S. H. Park, E. Winfree, and S. Murata, “Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern”, Nano Letters, 2008, Vol. 8, 1791–1797.


R. F. Hariadi, S. C. Langford, and J. T. Dickinson, “Controlling nanometer-scale crystal growth on a model biomaterial with a scanning force microscope”, Langmuir, 2002, Vol. 18, Issue 21, 7773–7776.


J. T. Dickinson, R. F. Hariadi, and S. C. Langford, “Mechanical detachment of nanome-ter particles strongly adhering to a substrate: an application of corrosive tribology”, Journal of Adhesion, 74 373-390.


  1. J. T. Dickinson, R. F. Hariadi, and S. C. Langford, “Manometer scale investigations of chemical mechanical polishing mechanisms using scanning force microscopy,” Ceramics Transactions, Vol. 102, 213-232.
  2. J. T. Dickinson, R. F. Hariadi, L. Scudiero, and S. C. Langford, “A scanning force micro-scope study of detachment of nanometer-sized particles from glass surfaces”, Tribology Letters, Vol. 7, 113-119.
  3. R. F. Hariadi, S. C. Langford, and J. T. Dickinson, “Scanning force microscope obser-vations of particle detachment from substrates: The role of water vapor in tribological debonding”, Journal of Applied Physics, 1999, Vol. 86, 4885–489.